Adhérer à l’ANRPFD en 2020

Calendrier des Salons Radio 2019

ADHEREZ VIA PAYPAL Facile!

QTR UTC

Faire un don

News ANRPFD depuis 26/02/2017

Chronique SWL Nationale ANRPFD

nl

Associations Partenaires de l’ANRPFD

Petites Annonces

Cluster-DX-FOR-ME

Twitter – Facebook

Catégories

Twitter infos

Propagation Bandes HF

Cluster Dx Fun

Twitter

Prévisions Météo

Astronomie-Radioastronomie

Un mystérieux visiteur des profondeurs de l’espace, la comète interstellaire 2I / Borisov, a été capturé par @ NASAHubble qui s’éloignait de notre système solaire. Cette photo du 9 décembre montre la comète après une approche rapprochée du Soleil où elle a atteint une vitesse maximale de 100 000 mph:  ICI  

Source Twitter NASA/ANRPFD

 

Les explosions solaires, telles que celle capturée par un satellite de la NASA en juin 2015, peuvent causer des dégâts considérables sur les réseaux électriques et les télécommunications sur Terre. Crédit: Observatoire Solar Dynamics, NASA

1921 événement solaire

Le magazine Scientific American rapporte que de nouvelles données suggèrent que le «New York Railroad Storm» de 1921 aurait pu dépasser l’intensité du célèbre Carrington Event de 1859.
Dans un article publié dans la revue Space Weather, Jeffrey Love de l’US Geological Survey et ses collègues ont réexaminé l’intensité de l’événement de 1921, connu sous le nom de « New York Railroad Storm », avec plus de détail que jamais. Bien que différentes mesures d’intensité existent, les tempêtes géomagnétiques sont souvent notées sur un indice appelé temps de tempête de perturbations (Dst), une manière de mesurer l’activité magnétique globale en faisant la moyenne des valeurs de l’intensité du champ magnétique terrestre mesuré à plusieurs endroits. Le niveau de Dst de base de notre planète est d’environ -20 nanoteslas (nT), avec une condition de «superstorm» définie comme se produisant lorsque les niveaux tombent en dessous de –250 nT.
Des études sur les données magnétiques très limitées du « Carrington Event » ont montré que son intensité était comprise entre –850 et –1 050 nT. Selon l’étude de Love, la tempête de 1921 a toutefois atteint environ -907 nT. «La tempête de 1921 aurait pu être plus intense que celle de 1859», déclare Love. «Avant la rédaction de notre document, il était clair que [la tempête de 1921] était intense, mais à quel point l’intensité n’était pas vraiment claire.»
Lire l’histoire complète ICI
Source ICI

La caméra NO-104 sera en direct cette semaine

Les contrôleurs du NO-104 (PSAT-2) ont annoncé que le 13 septembre avoir ordonné à l’appareil photo de prendre une photo et de la stocker en mémoire toutes les 10 minutes. Ce mode devrait durer 7 jours ou au moins jusqu’à la prochaine session de commande du lundi.
Le compteur émetteur, qui sélectionne une image pour la liaison descendante, n’est pas synchronisé avec l’appareil photo. Par conséquent, le délai entre l’acquisition d’une image et sa transmission est incertain, jusqu’à un maximum de 64 minutes.
Chaque image sera reliée une fois pour que chaque réception compte.
La liaison descendante ne fonctionne pas pendant l’éclipse.
Plus d’informations ICI 
Ales Povalac, OK2ALP et Tomas Urbanec, OK2PNQ
ANS

Un schéma illustrant la structure d’une jeune étoile massive, plus de 100 fois la masse du Soleil comme devaient l’être les étoiles de première génération quelques centaines de millions d’années tout au plus après le Big Bang. Comme dans toutes les étoiles, la pression du gaz de particules, noyaux, électrons et photons est normalement en équilibre avec la pression causée par la gravité de l’étoile. Mais dans une étoile d’au moins 140 masses solaires, les photons gamma sont si énergétiques (les traits ondulés sur le schéma) qu’ils finissent par créer des paires d’électron et de positron, donc de l’antimatière. © Nasa/CXC/M. Weiss

Certaines supernovae très brillantes pourraient provenir de la création de paires de particule et antiparticule. Un groupe d’astrophysiciens pense avoir observé le premier exemple indiscutable de ce type d’explosion d’étoile avec de l’antimatière : SN 2016iet.

Un schéma illustrant la structure d’une jeune étoile massive, plus de 100 fois la masse du Soleil comme devaient l’être les étoiles de première génération quelques centaines de millions d’années tout au plus après le Big Bang. Comme dans toutes les étoiles, la pression du gaz de particules, noyaux, électrons et photons est normalement en équilibre avec la pression causée par la gravité de l’étoile. Mais dans une étoile d’au moins 140 masses solaires, les photons gamma sont si énergétiques (les traits ondulés sur le schéma) qu’ils finissent par créer des paires d’électron et de positron, donc de l’antimatière. © Nasa/CXC/M. Weiss 
La température ne va cesser de grimper et en très peu de temps le cœur de l’étoile, contenant un mélange de noyaux de carbone et d’oxygène, va exploser du fait des réactions thermonucléaires qui se produisent alors en convertissant sa matière en noyaux lourds. Prend alors naissance un nouveau type de supernova baptisée Pair Instability Supernovae (PISNe) ne laissant aucun astre compact derrière elle (sauf éventuellement un trou noir si l’étoile est suffisamment massive, c’est-à-dire probablement au-delà de 260 masses solaires). L’explosion doit surpasser celle d’une supernova normale et s’accompagner de la production d’une grande quantité de nickel radioactif en plus d’une grande quantité de matière éjectée.

Mais attention, si l’étoile est en quelque sorte annihilée, ce n’est pas la production d’antimatière qui en est responsable, les positrons ne pouvant d’ailleurs pas annihiler les protons et les neutrons des noyaux de l’étoile. C’est bien le souffle de l’explosion, l’onde de choc produite, qui disperse totalement la matière de l’étoile génitrice de la PISNe.
SN 2016iet : une supernova exotique repérée par Gaia
Depuis quelques années, des candidats au titre de PISNe ont été détectés mais en dernière analyse, aucun n’a finalement convaincu la communauté des astrophysiciens. Il semble que cela va changer avec l’annonce faite par une équipe de chercheurs principalement états-uniens via un article publié dans The Astrophysical Journal et en accès libre sur arXiv.
Tout a commencé, le 14 novembre 2016, avec la détection par le satellite Gaia de l’ESA de la supernova cataloguée sous la dénomination de SN 2016iet. Elle a rapidement mobilisé une batterie de télescopes et d’observateurs, en particulier le télescope Gemini North au sommet du Mauna kea à Hawaï, mais aussi le télescope Magellan situé à l’observatoire Las Campanas au Chili.Image de SN 2016iet et de sa galaxie hôte la plus probable, prise avec le télescope de 6,5 mètres à l’observatoire de Las Campanas, le 9 juillet 2018. © Gemini Observatory 
SN 2016iet s’est révélée être une supernova très inhabituelle, déjà par le fait que la durée de sa courbe de lumière était anormalement longue et il a fallu environ 800 jours avant que sa luminosité tombe au centième de celle qu’elle avait à son maximum. Il y avait aussi peu d’émissions de raie de l’hydrogène, ce qui indiquait une étoile plutôt isolée ainsi qu’un manque de signatures de la présence d’éléments lourds. Il s’agissait somme toute de signatures chimiques très curieuses pour une supernova dont la distance à la Voie lactée (environ un milliard d’années-lumière) indiquait qu’elle était intrinsèquement très lumineuse pour être aussi brillante et devait donc provenir d’une étoile particulièrement massive…. de l’article de Laurent Sacco de Futura Sciences.

Ce qu’il faut retenir
Quand une étoile atteint environ 100 masses solaires, sa température est si élevée que les réactions de fusion thermonucléaire produisent des photons gamma capables de matérialiser des paires d’électron et de positron.
Cette production d’antimatière peut conduire à un emballement des réactions de fusion.
Entre 100 et 130-140 masses solaires, l’étoile peut se mettre à pulser en faisant des explosions en supernova sans détruire l’étoile, éjectant juste des dizaines de masses solaires.
Au-delà de 130-140 masses solaires, la supernova par production de paires devient une Pair Instability Supernovae (PISNe), c’est-à-dire une supernova par instabilité de paires et le souffle de son explosion la détruit complètement.
Le premier cas solide de supernova par production de paires – PISNe, ou PPISNe si l’étoile est en dessous de 140 masses solaires – a probablement été observé : SN 2016iet.

A l’occasion du 14éme festival astrojeunes et du 29éme festival d’astronomie de Fleurance, le radioclub du Gers (F5KHP) activera l’indicatif spécial TM14FAJ du 01/08/2019 au 15/08/2019.
QSLs via bureau pour F5KHP, direct via F8BMG, EQSL : OK, Clublog : OK
Liste des opérateurs:
F1BOH, F1UFW, F4CWN, F4HVH, F4HVO, F5BUU, F5GFE, F5JMH, F5LNT, F5OGJ, F6BYZ, F6FUD, F6GGX, F8BMG.
Entièrement dédié aux jeunes de 4 à 17 ans, le Festival Astro-jeunes permet une découverte du ciel, des étoiles et de l’astronautique tout en s’amusant ! Cette manifestation, unique en son genre en Europe, est préparée et animée, en collaboration entre les association du Groupe Ferme des Etoiles, l’association UniverSCiel – intégrant des jeunes chercheurs issus de laboratoires de recherche nationaux (IRAP, ONERA, Observatoire de Paris, IPAG, APC, IPGP) et internationaux (Angleterre) – avec le concours du CNES, de la revue Espace & Exploration, des Radio amateurs du Gers.
Festival-astronomie ICI
F5KHP ICI

Source QRZ.com ICI

Le lâcher du ballon aura lieu le mardi 23 juillet 2019 entre 10h et 11h (ou 14h selon les conditions météorologiques) ou à défaut le mercredi 24 juillet 2019 entre 10h et 14h (toujours pour des raisons de météo). A l’occasion du 50ème anniversaire de la Mission « Apollo 11 »
L’équipe composée de Gilles CHARLES (technicien Gremi-Prisme – Université d’Orléans), Flavien VALENSI (Laboratoire Laplace « Toulouse »), Christophe OZOG, Antoine PERREUX ainsi que deux Radioamateurs, F4CQA Christophe LUCAS et F4FCH Christophe CONTENT ont décidé du lancement d’un ballon sonde
La caméra embarquée sera équipée d’un émetteur DATV (vidéo numérique) qui permettra de visionner  le vol en direct sur Internet (YouTube). Le lien sera public, les mots clés à insérer dans le moteur de recherche : « ballon 50 ans apollo 11 ». Une caméra supplémentaire Gopro enregistrera une vue de la nacelle pendant le vol.
Tout lancement d’aérostats en vol libre est soumis à des autorisations auprès de la DGAC (Direction générale de l’aviation civile) que nous avons obtenu.
Le lancement aura lieu depuis VENESMES (18), lieu « les champs de la plante » position GPS : 46.8317 N et  2.3059 E. ICI

Alain RIAZUELO, astrophysicien à l’IAP, spécialiste de l’univers primordial offre par le biais de cette vidéo une vision juste et largement compréhensible de ce qu’est un trou noir selon l’état actuel des connaissance scientifiques. Un discours simple et précis qui peut aussi, pour les plus curieux d’entre nous, servir de point de départ à de plus amples recherches personnelles.

 

GRCon18: Radiotélescopes Open Source

Al Williams WD5GNR écrit sur Hackaday à propos de la présentation donnée par John Makous à la conférence sur la radio GNU 2018
Qui n’aime pas regarder le ciel nocturne? Mais si vous aimez la radio, il existe une toute autre façon de regarder à l’aide de radiotélescopes.
Lors de la conférence GNU Radio, John Makous a expliqué comment il avait travaillé à la création d’un radiotélescope qui soit pratique à construire et à utiliser par des étudiants plus jeunes.
Regardez la vidéo et lisez le post de Hackaday ICI
Présentations GNU Radio ICI

Une micronova solaire donne toutes les preuves de la catastrophe, y compris la nature cyclique, ainsi que le point d’impact de la catastrophe et les preuves analogues à celles de l’impacteur.

 

Une collision dans la ceinture d’astéroïdes

Quelque chose de violent vient de se passer dans la ceinture d’astéroïdes.
Pas très loin de l’orbite de Mars, l’astéroïde Gault 6478 semble avoir été heurté par un autre astéroïde.
Le flux de débris qui en résulte s’étend sur plus de 400 000 km, ce qui est supérieur à la distance entre la Terre et la Lune.
Les astronomes du monde entier surveillent maintenant l’astéroïde, jusqu’alors banal, pour voir ce qui se passera ensuite.
Obtenez l’histoire complète sur l’édition d’aujourd’hui Spaceweather.com

Pluie de météores quadrantide

La pluie de météorites Quadrantid atteindra son taux d’activité maximal le 4 janvier 2019.
Certaines étoiles filantes associées à la douche devraient être visibles chaque nuit du 1er au 6 janvier.
Les pluies de météorites annuelles surviennent lorsque la Terre traverse des flux de débris laissés par les comètes et les astéroïdes.

• Nous remercions Mike Terry pour les informations ci-dessus

Regardez Ultima Thule survolée par New Horizons

Le vaisseau spatial New Horizons de la NASA n’est plus qu’à quelques heures d’Ultima Thule, un mystérieux objet allongé dans la lointaine ceinture de Kuiper.
Le 1er janvier à 12 h 33 (HNE), New Horizons dépassera Ultima Thule trois fois plus près, qu’elle n’a fait vibrer Pluto en 2015.
Plus d’informations et des liens vers la couverture en direct sont disponibles dans l’édition d’aujourd’hui de Spaceweather.com ICI

Une comète aussi grosse que la pleine lune

La comète hyperactive 46P / Wirtanen s’approche de la Terre pour l’une des rencontres de comète terrestre les plus proches de l’ère spatiale.
Les observateurs rapportent que l’atmosphère verte gazeuse de la comète couvre maintenant une partie du ciel aussi grande que la pleine lune, et qu’elle s’agrandit.
Les cartes du ciel et les astuces d’observation d’experts figurent dans l’édition d’aujourd’hui de Spaceweather.com ICI  .

La douche de météorites Léonides le max le 17 et 18/11/2018!

La terre entre dans un flux de débris provenant de la comète Tempel-Tuttle, source de la pluie de météores annuelle Leonid. La nuit dernière, le réseau de caméras de météore «ciel entier» de la NASA a détecté cinq boules de feu Leonides au-dessus des États-Unis, un nombre qui augmentera à mesure que nous entrons dans le week-end. Les prévisionnistes s’attendent à ce que la pluie atteigne son maximum les 17 et 18 novembre avec des taux atteignant 15 météores à l’heure.
Les Leonides sont célèbres pour avoir pris d’assaut. La Terre heurte un filament dense des débris poussiéreux de la comète Tempel-Tuttle aussi souvent que plusieurs fois par siècle, faisant ainsi sortir des milliers de météores par heure de la constellation du Lion. Une telle exposition en 1833 a lancé l’astronomie météorique moderne avec une explosion de 100 000 Léonides par heure. De nombreux lecteurs se souviennent encore des boules de feu Leonid de 1998 et des météores de 1999, 2001 et 2002……

Les 8 et 9 octobre, les Européens à l’extérieur autour de minuit ont été émerveillés par le flot de faibles météores qui ont envahi le ciel. «C’était une forte explosion de la pluie de météores annuelle Draconid», rapporte Jure Atanackov, membre de l’Organisation internationale de météorologie qui a assisté à l’affichage de la Slovénie. Entre 22 h 00 TU (8 octobre) et 01 h 00 TU (9 octobre), les taux de météores dans le ciel noir dépassaient 100 par heure. Dans l’est de la France, Tioga Gulon a vu «1 à 2 météores par minute», dont beaucoup sont présentés ici dans une image empilée avec des images de sa caméra vidéo par Space Weather .com: