MiniTiouner & MiniTiounerPro

Create your own DVB-S/S2 USB receiver

CAT16 24/09/2015 Jean Pierre Courjaud F6DZP

MiniTiouner Internals

- L-Band receiver
- Wide band or Narrow band, phase modulated signal
- STB6100 Or STV6110 processes RF signal
- Analogue differential I and Q signals
- QPSK demodulator, STV0903, Processes I and Q signals
- Transport Stream is transferred to the PC via the FTDI Mini-Module FT2232H, connected to the USB input of the PC.
- The software sends instructions to setup STV0903 via USB / I²C. The instructions are sent to the STB6100 or STV6110 synthesizer via an I²C repeater.

We use a NIM

Network Interface Module

Samsung

Which NIM must I use?

To be sure that it works well at low SR, we must chose a NIM using a STV0903 as the demodulator.

In 2015, I have selected 3 kinds of NIM. Samsung Sharp

Eardatek

In 2016,I have added 2 new NIMs : LG and Serit with STV0913

First prototype in March 2015

The USB mini module FT2232H

Minitiouner: basic Schematic

FT2232H configuration

MiniTiouners...

Pipo can run MiniTioune

- A little PC running Win8.1
- Intel Atom Quad Core
- 4 USB + 1 micro USB
- HD touchscreen (1280x800)
- HDMI output
- Wi-Fi and Bluetooth
- 12v 480mA when receiving and rendering video
- Less than \$110

We use VLC to see the video

What new features does DVB-S2 offer?

Four modulation modes:

•QPSK and 8PSK are proposed for broadcast applications, and can be used in non-linear transponders driven near to saturation.

• 16APSK and 32APSK are used mainly for professional, semi-linear applications, but can also be used for broadcasting though they require a higher level of available C/N and an adoption of advanced predistortion methods in the uplink station in order to minimize the effect of transponder linearity. (not offered with standard NIM)

What new features does DVB-S2 offer?

Improved coding

a modern large LDPC code is concatenated with an outer BCH code to achieve quasi-error free (QEF) reception conditions on an AWGN channel. The outer code is introduced to avoid error floors at low bit-error rates.

A single FEC frame may have either 64800 bits (normal) or 16200 bits (short) not offered with standard NIM.

Several code rates for flexible configuration 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 5/6, 8/9, and 9/10. <u>Code rates 1/4, 1/3, and 2/5</u> have been introduced for exceptionally poor reception conditions in combination with QPSK modulation. (not offered with standard NIM)

What new features does DVB-S2 offer?

Improved rolloff:

0.20 and 0.25 in addition to the roll-off of DVB-S 0.35.

ACM/VCM : adaptive / variable coding modulation.
 Variable coding and modulation (VCM) to optimize bandwidth utilization based on the priority of the input data, e.g., SDTV could be delivered using a more robust setting than the corresponding HDTV service.
 Adaptive coding and modulation (ACM) to allow flexibly adapting transmission parameters to the reception conditions of terminals, e.g., switching to a lower code rate during fading. (not offered with standard NIM)

Should we use DVB-S2?

- At standard Symbol rate QPSK: Better lock for lowest signal. We could expect a gain of 2dB ???
- At low Symbol Rate QPSK: <u>Using a standard NIM</u>, my first tests give me a better result with DVBS To be confirmed.... <u>Using a NIM "pro"</u>....I have not tested yet, but I suppose a better result.

Noise Power Measurement

That helps for setting our tracking system, measuring the sun noise, using your MiniTiouner

MiniTiouner Pro

MiniTiouner Pro

Using a NIM Pro : Serit FTS-4335

- 2 x RF inputs
- 2 x ZIF tuners wide bandwidth
- 2 x DVB-S/S2 demodulators Advanced
- 2 x TS parallel outputs

Why I call it « Pro » ?

Because there is an « A »!

The DVB S/S2 demodulator is the STV0910A The « A » means « Advanced » So we will have advanced features: •<u>Code rates 1/4, 1/3, and 2/5</u> •<u>16 APSK and 32 APSK</u> •<u>Short frames</u> •<u>ACM Adaptive coding and modulation</u> •<u>Low Symbol Rate optimisation</u> •Data mode, Measuring mode ...

Dual tuner STV6120

Four VLNA inputs + On-chip 4:2 matrix

Input frequency range 250 MHz to 2150 MHz → tested working from 144MHz to 2450 MHz

Two independently programmable tuners RF to baseband direct conversion

Extremely low phase noise

Continuously variable gain: 0 to 65 dB Additional and programmable gain on baseband amplifier: 0 to 16 dB Programmable 5- to 36-MHz cut-off frequency (Butterworth 5th-order baseband filters)

MiniTiounerPro synoptic

FTS-4335

From Serie

	R/ INPU		RF INPUT_2
LNB_A1_power			
1nF +	+0 8	2 LNB_A2	1 LNB_A1
12 20 4 1	00	4 GND	3 GND
+3.3Voit 470uF 222	-08	6 TS1_D0	5 3.3VT
	00	8 TS1_D2	7 TS1_D1
	03	10 TS1_D4	9 TS1_D3
DATA_1	00	12 TS1_D6	11 TS1_D5
	0.9	14 TS1_CLKOU	T 13 TS1_D7
	00	16 TS1_SYNC	15 TS1_VALID
+3.3Volt 202470.1F	0 0	18 AS1	17 TS1_ERROF
Ţ	0 0	20 22K_TX1	19 22K_RX1
+1.1Volt + 222	0 0	22 SCL	21 SDA
* L	00	24 AS0	23 3.3VD
	-0 8	26 TS2_D0	25 1.1VD
	-0 0	28 TS2_D2	27 TS2_D1
To MPEG	00	30 TS2_D4	29 TS2_D3
DATA_2	00	32 TS2_D6	31 TS2_D5
	-0 0	34 TS2_CLKOU	T33 TS2_D7
	-0 0	36 TS2_SYNC	35 TS2_VALID
	0 0	38 RESET	37 TS2_ERROP
	0 0	40 22K_TX2	39 22K_RX2

MiniTiounerPro schematic

We can use the same schematic as we have used for the MiniTiouner.

We just need another FT2232H if we want to output the 2nd TS via USB

Another option is to output the second TS to a DVB parallel port

Minitioune Pro Using 2 VLC

MiniTiouner Pro / Minitioune next steps

NIM FTS-4335 is easy to buy in lots of 100 units. Before we create a PCB, <u>we have now to decide which</u> <u>option to choose:</u>

1.Same as MiniTiouner, same schematic : 1 x FT2232H \rightarrow 1 TS output (demod1 or demod2). 2. Double USB TS output using 2 x FT2232H 3.1 x USB TS output and 1 x TS parallel output (remember that we have 2 multiplexers that allow us to do many things : receiving and showing a TS and sending the same to the parallel output ...or different TS at different output or ...)

In case we choose solution 3, it is easy to create a little external parallel to USB converter using a 2nd FT2232H

MiniTiouner-Pro - availability

MiniTiouner-Pro seems to be a good solution for the future It can be used for many applications:
•DATV DVB-S
•Narrow band DATV
•DATV DVB-S2
•Peopining HemTV

- •Receiving HamTV
- Receiving broadcast satellite DVB-S or DVB-S2

For a first solution, a kit or PCB could be offered. A second solution could be a MiniTiouner-Pro fully assembled and tested, as proposed by Art Towslee WA8RMC.

Conclusion

- The Minitiouner /MiniTiouner-Pro project offer us to build our own USB DVB-S/S2 tuner that can receive from SR 120 kS/s up to 45000 kS/s.
- NIM, pcb and others components are available at the BATC shop
- Pipo X8/X9 + Minitiouner = a mobile solution
- Narrow Bandwidth DATV is now possible for DX
- Useful also for receiving HamTV.

All information on <u>www.vivadatv.org</u> Forum You can also look at the BATC forum : <u>http://www.batc.org.uk/forum/</u>

Thank you for your attention